2021. 5. 8. 02:38ㆍ데이터 사이언스/모델링 결과 확인
ㅇ결과 예시
test_report = get_test_report(gnb_model)
print(test_report)
update_score_card("Simple Logistic Regression",logreg,cutoff=0.69,stability="Good")
ㅇ필요한 메소드
1. ################################
score_card = pd.DataFrame(columns=["Model Name",'Prob.Cutoff',"Stability","r2_score", 'AUC', 'Precision', 'Recall',
'Accuracy', 'Kappa', 'f1-score'])
def update_score_card(Model_name,model,cutoff='-',stability="Stable"):
y_pred_prob = model.predict(X_test)
y_pred = [ 0 if x < cutoff else 1 for x in y_pred_prob]
global score_card
score_card = score_card.append({"Model Name":Model_name,
"Prob.Cutoff":cutoff,
'Stability': stability,
"r2_score":model.prsquared,
'AUC' : metrics.roc_auc_score(y_test, y_pred_prob),
'Precision': metrics.precision_score(y_test, y_pred),
'Recall': metrics.recall_score(y_test, y_pred),
'Accuracy': metrics.accuracy_score(y_test, y_pred),
'Kappa':metrics.cohen_kappa_score(y_test, y_pred),
'f1-score': metrics.f1_score(y_test, y_pred)},
ignore_index = True)
return score_card
2. ##################################
def get_test_report(model):
test_pred = model.predict(X_test)
return(classification_report(y_test, test_pred))
'데이터 사이언스 > 모델링 결과 확인' 카테고리의 다른 글
설명가능한 머신러닝 (IML) (0) | 2023.03.01 |
---|---|
Confusion_matrix 메소드 정의 (0) | 2021.05.08 |
ROC 커브 메소드 정의 (0) | 2021.05.08 |