모듈 불러오기
# import 'os'
import os
# import 'Pandas'
import pandas as pd
# import 'Numpy'
import numpy as np
# import subpackage of Matplotlib
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
# import 'Seaborn'
import seaborn as sns
# to suppress warnings
from warnings import filterwarnings
filterwarnings('ignore')
# import train-test split
from sklearn.model_selection import train_test_split
# import StandardScaler to perform scaling
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
# import phi corr
import phik
# import various functions from sklearn
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
from sklearn.metrics import classification_report
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import RFE
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import classification_report
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import tree
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
#display Image
from IPython.display import Image
# Boosting Classifier
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from catboost import CatBoostClassifier
# Stacking
from sklearn.ensemble import StackingClassifier